欧美一级淫片免费视频欧美辣图-91啪在线-亚洲男同网-超碰人人爱人人-美国少妇性做爰-少妇又爽又刺激视频-亚洲区中文字幕-偷拍区另类欧美激情日韩91-亚瑟av-欧美一级淫片007-国产精品国产三级国产专播i12-我要干成人网-色.www-国产乱轮视频-国产成人高清视频

行業動態

聚焦行業動態,洞悉行業發展

有哪些材料不適合用真空燒結爐處理
發布時間:2019-04-09   瀏覽:3549次

  有哪些材料不適合用真空燒結爐處理

  真空燒結爐主要是用來處理金屬材料的。很多金屬材料都是通過高溫來加工或作其他生產。那么,是否有某一類金屬材料不能在真空爐中熱處理呢?

  從理論上講,金屬材料都可以在真空燒結爐中熱處理。但因技術要求、加工成本、工藝實現的難易程度等原因,下列材料(工件)不宜在真空爐中熱處理。

  1.高溫對N元素敏感,易形成有害效果的材料。真空爐為防止合金元素高溫時揮發,通常在高溫下充高純氮氣保持分壓,冷卻時一般采用充氮冷卻。故該類材料不宜用真空爐處理。

  2.碳素鋼。從成本角度考慮,碳鋼價格較低,成品件價格較低,用真空燒結爐處理實屬浪費,除非高利潤工件或者工件已經沒有加工余量,對表面質量要求苛刻時的權宜之計。

  3.某些使用特殊工藝的材料(工件)。比如為獲取好的機械性能,有些工件要求獲得貝氏體,一般用等溫淬火來實現,真空燒結爐很難實現;再如T10鋼,要求高硬度、低變形,一般用水淬油冷工藝實現,真空爐雖然可以用高壓氣淬獲得高硬度,但因在Ms點以下溫度冷速較快,變形較大。

  好了,總結的以上三種材料就是不宜在真空燒結爐中處理的金屬材料了。


免責聲明:本站部分圖片和文字來源于網絡收集整理,僅供學習交流,版權歸原作者所有,并不代表我站觀點。本站將不承擔任何法律責任,如果有侵犯到您的權利,請及時聯系我們刪除。

相關推薦

08 December 2022
真空燒結爐脫脂系統的運行原理

真空燒結爐脫脂系統的運行原理

  真空燒結爐脫脂系統的運行原理  真空燒結爐在仔細去除熱區的聚合物粘結劑殘留后,為了防止粘結劑在管道、閥門或許泵上堆積,需求繼續有用地處理和過濾載有粘結劑的工藝氣體。  假如要不連續生產、堅持低保護成本,就必須考慮經過有用的粘結劑收集體系來保護關鍵結構部件。氣流和粘結劑的分離可在=現代真空燒結爐中得以完成。一個強壯的真空泵效率高的完成了熱區抽真空,它由一個機械泵支撐的羅茨泵構成。高溫和高速率的工藝氣體攜帶著飽和蒸騰的聚合物材料,經真空爐殼底部的排氣管抽出。當氣流受冷管壁影響而轉向的時候,忽然降速、冷卻,導致部分氣態粘結劑瞬間再次冷凝;這樣,高達20%~25%的粘結劑材料現已在管道堆積,終將導致管道堵塞。為了防止人工保護,經過電動擠壓機(活塞)來完成必要的清潔工序自動化,將堆積物擠壓出管道。  經過冷卻和加熱順序的不同,粘結劑冷凝及隨后的去除能夠得到改進。雙壁管道的水冷支撐能進步粘結劑材料的冷凝效果,但也會導致冷凝液更快地凝固。因而,管道上纏繞的加熱線圈必須在電動擠壓機運作前協助粘結劑層再次軟化。  經過水平的管道后,仍有約75%的粘結劑污染物包含在氣流中。為了保護重要和值錢的結構部件不被損壞,確保進一步的清潔程序順利進行,上游銜接有專門的過濾體系(在泵之前)。根據使用的粘結劑和個性化程序參數,差異于傳統的過濾理念可能是有用的,便于清潔的濾芯是過濾體系的作業原理,它能大大地縮短保護時間。它設有四個階段的污物截留體系:一階段使用大的表面積捕獲重顆粒、冷凝的揮發性固體和液體;第二和第三階段經過在特定位置裝置的金屬線網篩,逐漸過濾粘結劑;用于捕獲可能在之前幾個階段遺漏的氣態微粒。模塊化的體系帶有加熱功用,從而能溶解捕獲的粘結劑,使之收集在一個能被輕易移除和清潔的桶中。  即便真空泵的污染危險現在現已降到了較低,長期的粘結劑堆積(如葉片或許殼體)仍會在7天24h不連續運行的情況下產生。為了堅持較大的真空性能,以較小空隙裝置的快速旋轉部件需求堅持清潔。

26 August 2024
氣相沉積爐在微電子制造中的核心作用

氣相沉積爐在微電子制造中的核心作用

  氣相沉積爐在微電子制造中的核心作用  隨著科技的飛速發展,微電子制造技術已成為現代社會不可或缺的一部分。其中,氣相沉積爐作為微電子制造領域的關鍵設備,發揮著舉足輕重的作用。氣相沉積爐廠家八佳電氣將深入探討氣相沉積爐在微電子制造中的核心作用,以期進一步了解其在推動微電子行業發展中的重要意義。  一、氣相沉積爐的基本原理與特點  氣相沉積爐是一種利用氣相反應在固體表面沉積薄膜的設備。其基本原理是將所需材料的氣態原子或分子通過一定的物理或化學過程,沉積在基體表面形成薄膜。氣相沉積爐具有沉積速率高、薄膜均勻性好、可制備多種材料等優點,因此在微電子制造領域得到了廣泛應用。  二、氣相沉積爐在微電子制造中的應用  制備薄膜材料  微電子器件的制造過程中,往往需要制備各種薄膜材料,如金屬薄膜、絕緣薄膜、半導體薄膜等。氣相沉積爐能夠通過精確控制沉積條件,制備出高質量、高性能的薄膜材料,滿足微電子器件的性能需求。  制備納米材料  納米材料在微電子領域具有廣泛的應用前景。氣相沉積爐能夠制備出納米尺度的薄膜、顆粒和線等材料,為微電子器件的小型化、高性能化提供了有力支持。  制備多層結構與復合材料  微電子器件往往需要多層結構和復合材料的支撐。氣相沉積爐能夠在同一基體上連續沉積多種材料,形成具有特定功能的多層結構和復合材料,為微電子器件的集成化和多功能化提供了可能。  三、氣相沉積爐對微電子制造的影響  提高器件性能  氣相沉積爐制備的薄膜材料具有優異的電學、光學和機械性能,能夠有效提高微電子器件的性能。例如,通過氣相沉積爐制備的金屬薄膜可以提高器件的導電性能,絕緣薄膜則可以增強器件的絕緣性能。  推動微電子制造技術創新  氣相沉積爐的應用不斷推動著微電子制造技術的創新。隨著氣相沉積爐技術的不斷發展,新的沉積方法、新材料和新工藝不斷涌現,為微電子制造提供了更多的可能性。  促進微電子產業發展  氣相沉積爐作為微電子制造的關鍵設備,其技術進步和應用推廣對于微電子產業的發展具有重要意義。隨著氣相沉積爐在微電子制造中的廣泛應用,微電子產業的規模不斷擴大,技術水平不斷提高,為經濟社會發展做出了重要貢獻。  四、結語  綜上所述,氣相沉積爐在微電子制造中發揮著核心作用。它不僅能夠制備高質量、高性能的薄膜材料和納米材料,還能夠實現多層結構和復合材料的制備,為微電子器件的性能提升和制造技術創新提供了有力支持。隨著微電子產業的不斷發展,氣相沉積爐的應用前景將更加廣闊。因此,我們應繼續加大對氣相沉積爐技術的研發和應用力度,推動微電子制造技術的不斷進步和發展。